

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

This thesis done in cooperation with the MOVES Institute.

Approved for public release; distribution is unlimited.

A RENDERING SYSTEM INDEPENDENT HIGH LEVEL
ARCHITECTURE IMPLEMENTATION FOR NETWORKED

VIRTUAL ENVIRONMENTS

by

Robert S. List

September 2002

 Thesis Advisor: Rudolph P. Darken
 Co-Advisor: Joseph A. Sullivan

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A RENDERING SYSTEM INDEPENDENT HIGH LEVEL
ARCHITECTURE IMPLEMENTATION FOR NETWORKED VIRTUAL ENVIRONMENTS

5. FUNDING NUMBERS

6. AUTHOR (S) Maj Robert S. List
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the U.S. Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The High Level Architecture (HLA) is the Department of
Defense standard for networking virtual environments. This
thesis implements a modular HLA component that can be used
independently from the graphics-rendering engine used by the
programmer. The modular design of the HLA component allows
programmers of virtual environments to rapidly network their
existing standalone virtual environments using the DOD standard
networking protocol. The HLA component is being used to build a
networked virtual environment compatible with Joint Semi-
Automated Forces (JSAF). This networked virtual environment will
allow a group of human controlled simulations to interact with
JSAF controlled entities over common terrain.

14. SUBJECT TERMS High Level Architecture, HLA,
Networked Virtual Environments, Joint Semi-Automated
Forces, JSAF

15. NUMBER OF
PAGES

71

 16. PRICE CODE
17. SECURITY
CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A RENDERING SYSTEM INDEPENDENT HIGH LEVEL ARCHITECTURE
IMPLEMENTATION FOR NETWORKED VIRTUAL ENVIRONMENTS

Robert S. List

Major, United States Marine Corps
B.S., North Carolina State University, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Robert S. List

Approved by: Rudolph P. Darken

Thesis Advisor

Joseph A. Sullivan
Co-Advisor

Christopher S. Eagle
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The High Level Architecture (HLA) is the Department of

Defense standard for networking virtual environments. This

thesis implements a modular HLA component that can be used

independently from the graphics-rendering engine used by

the programmer. The modular design of the HLA component

allows programmers of virtual environments to rapidly

network their existing standalone virtual environments

using the DOD standard networking protocol. The HLA

component is being used to build a networked virtual

environment compatible with Joint Semi-Automated Forces

(JSAF). This networked virtual environment will allow a

group of human controlled simulations to interact with JSAF

controlled entities over common terrain.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. PROBLEM STATEMENT1
B. APPROACH ...2
C. THESIS ORGANIZATION2

II. HISTORY OF NETWORKED VIRTUAL ENVIRONMENT ARCHITECTURES ..5
A. OVERVIEW ..5
B. SIMULATOR NETWORKING5
C. DISTRIBUTED INTERACTIVE SIMULATION6
D. HIGH LEVEL ARCHITECTURE7
E. OTHER APPROACHES8

III. HIGH LEVEL ARCHITECTURE11
A. OVERVIEW ...11
B. FEDERATION RULES12

1. Federation Rules:12
2. Federate Rules:13

C. INTERFACE SPECIFICATION13
1. Federation Management14
2. Declaration Management14
3. Object Management15
4. Ownership Management15
5. Time Management16
6. Data Distribution Management16

D. OBJECT MODEL TEMPLATE (OMT)17
E. RUN TIME INFRASTRUCTURE18

1. RTI Executive18
2. Federation Executive18
3. RTI Library18

a. RTIambassador Class19
b. FederateAmbassador Class19

F. BASIC SEQUENCE OF EVENTS IN A FEDERATION20
IV. IMPLEMENTATION ...23

A. HIGH LEVEL ARCHITECTURE MODULE DESIGN23
1. hmHLAController Class24
2. hmDisplayController Class25
3. hmFederateAmbassador26
4. hmHLAObjectClass26
5. hmHLAObject27
6. hmHLAInteractionClass28
7. hmHandleValuePair28

B. HIGH LEVEL ARCHITECTURE SERVICES29
1. Publishing Object Attributes29

 viii

2. Creating a Local Object30
3. Create a Remote Object32
4. Send a Local Object Attribute Update33
5. Receive a Remote Object Attribute Update35
6. Publish an Interaction36
7. Send an Interaction37
8. Receive and Interaction38

C. OBJECT MODEL40
D. COMPATIBILITY WITH JOINT SEMI-AUTONOMOUS FORCES ...42
E. CHANGING RENDERING PLATFORMS42
F. INTEGRATING THE HIGH LEVEL ARCHITECTURE MODULE

INTO AN EXISTING APPLICATION43
V. TESTING AND RESULTS45

A. PROTOTYPE SYSTEM45
B. FINAL DESIGN46

VI. CONCLUSION ..49
A. GENERAL DISCUSSION49
B. CONTRIBUTIONS49
C. FUTURE WORK50

1. Additional High Level Architecture Services ...50
a. Time Management50
b. Ownership Management51
c. Data Distribution Management51

2. Additional Objects and Interactions51
3. Improved Network Performance52

LIST OF REFERENCES ..53
APPENDIX A. C++ SOURCE CODE55
INITIAL DISTRIBUTION LIST57

 ix

LIST OF FIGURES

Figure 1. Federation Management. (From: ref. 2)14
Figure 2. Declaration Management. (From: ref. 2)14
Figure 3. Object Management. (From: ref. 2)15
Figure 4. Ownership Management. (From: ref. 2)15
Figure 5. Time Management. (From: ref. 2)16
Figure 6. Data Distribution Management. (From: ref. 2) ...16
Figure 7. RTI and Federate Code Responsibilities. (From:

ref. 2) ...20
Figure 8. Federate and Federation Interplay. (From:

ref. 2) ...21
Figure 9. Class Relationship Diagram.24
Figure 10. Publish Object Attributes.30
Figure 11. Create a Local Object.32
Figure 12. Create a Remote Object.33
Figure 13. Send a Local Object Update.34
Figure 14. Receive a Remote Update.36
Figure 15. Publish an Interaction.37
Figure 16. Send an Interaction.38
Figure 17. Receive an Interaction.40

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGEMENTS

I would like to acknowledge several people for their

help and support that enabled me to complete this thesis.

First, I would like to thank my family for their support

and understanding. I would also like to thank Malachi

Wurpts of Southwest Research Institute for his

contributions to this thesis. His programming and module

design influence have made this a better thesis. I would

also like to thank my advisors Dr. Rudy Darken and CDR Joe

Sullivan for their guidance and leadership.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM STATEMENT

The High Level Architecture (HLA) is the Department of

Defense standard for networking virtual environments. HLA

allows a large amount of flexibility and freedom to

programmers. However, this flexibility makes implementing

HLA applications a complex undertaking. As yet, no tools

exist to aid programmers to rapidly implement a networked

virtual environment using the most current version of HLA.

Additionally, several versions of the HLA Run Time

Infrastructure (RTI) are available through the Department

of Defense and commercial industry. While all these RTIs

adhere to the HLA specification, applications written to

one RTI are not 100 percent compatible with all other RTIs.

This incompatibility can cause extensive engineering costs

in large-scale simulations, where individual simulations

were developed for different RTIs. An open code base is

needed that allows access to the RTI for fast HLA

integration.

This thesis will implement an HLA module that can be

used to network applications over HLA. An existing

application will be able to interface with the HLA module

to rapidly bring the application into an HLA networked

environment. The HLA module will be built in such a way as

to make the rendering system independent of the HLA module

provided the rendering system is compatible with C++.

Since the HLA module is independent of the rendering

system, programmers will not be limited when developing new

 2

applications and existing applications will be compatible

with this HLA module.

B. APPROACH

This thesis will demonstrate an HLA compliant

application written in C++ using the VEGA API from

Multigen-Paradigm. However, it will be possible to use

other C++ based rendering engines without changing any of

the HLA module code.

The Object Model Template (OMT) chosen for this

application is the Real-time Platform Reference Federation

Object Model (RPR FOM). This OMT was chosen because of its

large user base and with the aim to make this application

compatible with Joint Semi-Automated Forces (JSAF). The

modular design of this project will allow for easy

transition to another FOM.

C. THESIS ORGANIZATION

This thesis is organized in the following chapters:

• Chapter I: Introduction. This chapter states
the problem for this thesis and gives an overview
of the work.

• Chapter II: History of Networked Virtual
Environment Architectures. This chapter gives a
history of networked virtual environment
architectures

• Chapter III: High Level Architecture. This
chapter gives an overview of HLA.

• Chapter IV: Implementation. This chapter goes
over the details of the application’s design.
This chapter discusses the project’s modular
design and the application HLA object model.

• Chapter V: Testing and Results. This chapter
discusses the results of the project.

 3

• Chapter VI: Conclusions. This chapter contains
a general discussion of the conclusions drawn
from this project along with proposed future work
in this area.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. HISTORY OF NETWORKED VIRTUAL ENVIRONMENT
ARCHITECTURES

A. OVERVIEW

The history of the development of the High Level

Architecture (HLA) can be traced back to two earlier

projects: Simulator Networking (SIMNET) and Distributed

Interactive Simulation (DIS). Network environment

architectures began with the Defense Advanced Research

Project Agency (DARPA) SIMNET project. Later, the DIS

project defined a standard network protocol that would

allow different simulation projects to interact over a

network. HLA was developed by the Defense Modeling and

Simulation Office (DMSO) in conjunction with industry to

create a more flexible and scalable network architecture as

a replacement for DIS.

B. SIMULATOR NETWORKING

The DARPA SIMNET project began in 1983. The following

shows the purpose behind developing SIMNET.

SIMNET was started to demonstrate that networks

of low cost simulators could allow team training

to be carried out on a virtual battlefield.

Previously, simulator training was focused on

learning individual skills with standalone

simulators.1

The SIMNET project developed rapidly during the 1980s.

The original application for SIMNET was a tank gunnery

1 Proctor, Michael D (Ed.). (no date). Web-based Technical Reference

on Simulation Interoperability (online). Available:
<http://www.engr.ucf.edu/people/proctor/Interoperability%20Text/Text%20
Outline.htm> (29 Aug. 02), Ch. 8.

 6

trainer. For the trainer, four crew stations were linked

together; one station for each crewmen in a tank. The

project quickly expanded to include multiple tanks,

aircraft, fighting vehicles, and command posts. By 1990,

there were approximately 260 different simulators in 11

different sites involved in SIMNET.

The SIMNET project was delivered to the Army in 1990

where the Simulation, Training, Instrumentation Command

(STRICOM) changed the name to Distributed Interactive

Simulation.

C. DISTRIBUTED INTERACTIVE SIMULATION

For the SIMNET project, all the simulators were of a

homogenous type and were all developed by one development

team lead by DARPA. The need for an architecture to

network heterogeneous simulator types was recognized. The

DIS project created a network protocol standard that

allowed simulators from different projects to communicate

with each other. The DIS project defined how data was to

be distributed between simulations to make them

interoperable.

Work on developing DIS standards was accomplished at

semi-annual Workshops on Standards for the Interoperability

of Distributed Simulations. Groups of interested

volunteers met at these workshops in order to discuss,

develop, and publish DIS standards. The original standards

for DIS were approved as IEEE Standard 1278 in 1993. These

standards defined the Protocol Data Units (PDU) needed to

support entity attributes and movement, weapon firing,

detonations, and collision detection.

 7

Distributed Interaction Simulation uses a peer-to-peer

architecture. Each simulation in a DIS networked virtual

environment is linked to all the other member simulations

of the virtual environment on a computer network. Member

simulations of a DIS networked virtual environment directly

broadcast attribute update and interaction PDUs to all

other members.

D. HIGH LEVEL ARCHITECTURE

High Level Architecture was designed to replace DIS

with a more flexible and scalable network architecture.

HLA was sponsored by DMSO and developed by Science

Applications International Corporation, Virtual Technology

Corporation, Object Sciences Corporation, and Dynamic

Animations Systems.2 In 1998 HLA was set as the standard

network simulation architecture for all new DOD networked

virtual environment projects. HLA has been criticized

because the protocol was not opened to a standards

organization, like DIS was, for review while it was being

developed.

HLA was developed to address the limitations of DIS.

The number of entities in a DIS system is limited because

DIS is built on a peer-to-peer model where entity updates

are broadcast to the entire network. As the number of

entities increase, the congestion in the network increases

until the network becomes saturated. HLA combats this

problem by using a Run Time Infrastructure (RTI).

Simulations send their updates to the RTI, which keeps

track of which other simulations are interested in those

2 Department of Defense, Defense Modeling and Simulation Office. (no

date). High Level Architecture RTI 1.3-Next Generation Programmer’s
Guide, Version 4, inside cover.

 8

updates and the RTI then sends the updates to interested

parties over a multicast connection. Thus, redundant and

extraneous transmissions are filtered out, resulting in

fewer packets sent over the network, which reduces network

congestion.

Difficulties exist in creating a single protocol that

meets the needs of all simulation applications. Therefore,

key components of some simulations may not be supported by

DIS and therefore cannot be represented over the network.

The High Level Architecture is a more flexible architecture

because it lets programmers define their own set of entity

attributes and interactions called the Federation Object

Model (FOM).

DIS also has no provisions for time management. Each

simulation runs in real time and sends its updates over the

network. Since each simulation runs independently,

synchronization problems can occur between simulations

making it nearly impossible for each simulation to maintain

a consistent view of the virtual environment. HLA does

provide support for time management.

E. OTHER APPROACHES

The computer entertainment industry has developed

other architectures to network virtual environments.

Computer game companies are capable of hosting massive

multiplayer games online through the use of DirectX or

similar technologies. These multiplayer games are based on

a client/server architecture where the data for the virtual

world resides on the server. As a player moves into a new

area of the virtual world, the client downloads the world

data from the server. Interactions between players or

 9

other entities are routed through the server to other

players in the same area.

While this architecture works well for games, it is

not suitable for military training networked simulations at

this time. To ensure adequate network performance, there

is a limit to the level of detail in the virtual world that

can be downloaded to a client in a reasonable amount of

time. While game players are happy with the level of

detail provided in games, the level of detail is not

adequate for military applications.

In HLA applications, each simulation maintains its own

database of the virtual environment. Changes in the

environment can be distributed among the simulations.

Since each simulation maintains its own model of the

virtual environment, the level of detail can be much

greater providing for a higher fidelity virtual

environment.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. HIGH LEVEL ARCHITECTURE

A. OVERVIEW

The High Level Architecture was developed to establish

a common high-level simulation architecture

to facilitate the interoperability of all

types of models and simulations among

themselves and with C4I systems. The HLA is

designed to promote standardization in the

M&S community and to facilitate the reuse of

M&S components.3

An HLA application includes a federation composed of

one to many federates. A federation is group of

simulations that interact in the same virtual environment.

A federate is a member simulation of a federation.

Federates communicate with each other through the Run Time

Infrastructure (RTI). Federates register their entities

and subscribe to entities of interest with the RTI. The

RTI controls the data transfer between federates. The RTI

is responsible for ensuring data is sent from the

publishing federates to the subscribing federates.

The HLA architecture consists of three components.4

• Federation Rules

o Ensure proper interaction of simulations in

a federation.

o Describe the simulation and federate

responsibilities.

3 Ibid, p. 1-2.

4 Ibid, p. 1-3.

 12

• Interface Specification

o Defines Run-Time Infrastructure services.

o Identifies callback functions each federate

must provide.

• Object Model Template (OMT)

o Provides a common method for recording

information.

o Establishes the format of key models:

 Federation Object Model (FOM)

 Simulation Object Model (SOM)

 Management Object Model (MOM)

B. FEDERATION RULES5

1. Federation Rules:

1. Federations shall have an HLA FOM, documented in

accordance with the HLA Object Model Template OMT.

2. In a federation, all representation of objects in

the FOM shall be in the federates, not in the RTI.

3. During a federation execution, all exchange of FOM

data among federates shall occur via the RTI.

4. During a federation execution, federates shall

interact with the RTI in accordance with the HLA interface

specification.

5. During a federation execution, an attribute of an

instance of an object shall be owned by only one federate

at any given time.

5 Ibid, pp. 1-3 and 1-4.

 13

2. Federate Rules:

6. Federates shall have an HLA SOM, documented in

accordance with the HLA Object Model Template (OMT).

7. Federates shall be able to update and/or reflect

any attributes of objects in their SOM and send and/or

receive SOM object interactions externally, as specified in

their SOM.

8. Federates shall be able to transfer and/or accept

ownership of an attribute dynamically during a federation

execution, as specified in their SOM.

9. Federates shall be able to vary the conditions

under which they provide updates of attributes of objects,

as specified in their SOM.

10. Federates shall be able to manage local time in a

way that will allow them to coordinate data exchange with

other members of a federation.

C. INTERFACE SPECIFICATION

The interface specification determines how federates

interact with the federation through the RTI. The

specification consists of six management areas.

 14

1. Federation Management

Figure 1. Federation Management. (From: ref. 2)

2. Declaration Management

Figure 2. Declaration Management. (From: ref. 2)

 15

3. Object Management

Figure 3. Object Management. (From: ref. 2)

4. Ownership Management

Figure 4. Ownership Management. (From: ref. 2)

 16

5. Time Management

Figure 5. Time Management. (From: ref. 2)

6. Data Distribution Management

Figure 6. Data Distribution Management.
 (From: ref. 2)

 17

D. OBJECT MODEL TEMPLATE (OMT)

The OMT establishes a common framework for object and

interaction model documentation. The standard OMT provides

a common method for describing HLA Object Models.

A FOM is an object model common to all federates in a

federation. When a federation is created, the RTI reads

the FOM in order to know what objects and interactions to

expect. All federates in a federation must use the same

FOM so that the RTI can coordinate and control the data

transfer between federates. If a federate were able to use

a different FOM, then that federate would not be able to

recognize the objects and interactions that are passed back

and forth.

The FOM is composed of two classes: objects and

interactions. Objects are entities in the federate that

have persistence. Examples of objects are tanks, aircraft,

and ships. Attributes are used to describe an object.

Examples of attributes are world position, orientation, and

velocity. Interactions are non-persistent occurrences such

as collisions, munition detonations, and weapons fire

notifications. Interactions are made up of parameters.

Examples of parameters are detonation location and

detonation result.

An OMT for a specific FOM defines the objects and

interactions for a FOM. For each object, the OMT defines

that objects attributes. For each interaction, the OMT

defines its parameters. Further, the OMT defines the data

type of the parameters and attributes, cardinality (size of

an array or sequence), units, and accuracy (maximum

deviation from its intended value in the federate).

 18

E. RUN TIME INFRASTRUCTURE

The RTI used for this thesis is the Defense Modeling

and Simulation Office RTI 1.3-Next Generation Version 6.

This RTI was chosen because it is the RTI used by JSAF.

The RTI Executive (RtiExec), the Federation

Executive(FedExec), and the RTI libraty (libRTI) are the

three components that make up the RTI.

1. RTI Executive

The RtiExec is a process that manages multiple

Federation Executions in a network. Running the

rtiexec.exe program starts the RtiExec. The RtiExec

listens on an established multi-cast port for requests from

federates to create and destroy federations. When a

request for a federation creation is received, the RtiExec

spawns a federation execution process to manage that

federation. Requests from federates to join or resign a

federation are directed to the appropriate FedExec by the

RtiExec.

2. Federation Executive

The FedExec manages multiple federates in a

federation. The FedExec processes join and resign requests

from federates. The FedExec also controls and coordinates

the data transfer between federates.

3. RTI Library

The RTI Library provides an interface to HLA services

for the federates. The RTI Library contains two ambassador

classes that enable communication between the federation

and the federates: The RTIambassador class and the

FederateAmbassador class. The RTI Library also contains

 19

supporting classes and types that facilitate data transfer,

see Appendix C of the HLA Programmer’s Guide6 for

documentation of these classes and types.

a. RTIambassador Class

All requests from a federate to the RTI are made

by making method calls to the RTIambassador class.

Federates must declare an instance of an RTIambassador in

order to communicate with the RTI. Appendix A of the HLA

Programmer’s Guide7 contains descriptions of the methods of

the RTIambassador class.

b. FederateAmbassador Class

The FederateAmbassador class is an abstract class

in libRTI that must be implemented by each federate. The

libRTI FederateAmbassador identifies callback functions

that each federate must support. The RTI uses these

callback functions to send data to the federates. Appendix

B of the HLA Programmer’s Guide8 contains descriptions of

the methods that must be supported by federate

implementations of the FederateAmbassador class.

6 Ibid. Appendix C.

7 Ibid. Appendix A.

8 Ibid. Appendix B.

 20

Figure 7. RTI and Federate Code Responsibilities.
(From: ref. 2)

F. BASIC SEQUENCE OF EVENTS IN A FEDERATION

An HLA simulation follows a sequence of events from

federation creation to destruction. A FedExec is created

when a federate makes a create federation call to the

RtiExec using an RTIambassador. During the process of

creation the FedExec reads in the FOM for the federation,

so that the federation will know what kind of objects and

interactions can be expected during the simulation. After

successful creation of a federation the federate makes a

call to the FedExec to join the federation. The federate

then publishes object attributes and interactions to the

FedExec that the federate is capable of producing. The

federate then creates and registers objects with the

FedExec. The federate also subscribes to object and

interactions types in the FOM that the federate is

 21

interested in receiving from other federates in the

federation. As other federates register their objects with

the federation, the FedExec makes object discover calls to

the FederateAmbassador of the federate. As the simulation

progresses, the federate sends object attribute updates and

interactions to the FedExec so that they can be distributed

to other federates. The FedExec sends object attribute

updates to the federate via the FederateAmbassador. During

the simulation objects can be destroyed and therefore must

be deleted from the federate. When the federate shuts

down, it resigns from the FedExec. Finally, the last

federate to leave the federation makes a call to destroy

the federation.

Figure 8. Federate and Federation Interplay.
(From: ref. 2)

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. IMPLEMENTATION

The implementation of this thesis was completed in

conjunction with Southwest Research Institute. This thesis

was implemented with a C++ application and the DMSO RTI

1.3NG version 6. The application demonstrates an HLA

implementation that supports the basic HLA services needed

to run an HLA simulation. Services supported include:

federation creation, join federation, resign federation,

federation destruction, object and interaction publication,

object and interaction subscription, object creation,

object registration, sending and receiving object attribute

updates, and sending and receiving interactions. These

services will be covered in more detail below.

A. HIGH LEVEL ARCHITECTURE MODULE DESIGN

The HLA module consists of several classes. All of

the HLA module classes begin with hm to help identify them

as members of the HLA module. The hmDisplayController

class controls the function calls to the rendering system.

The hmHLAController class controls and coordinates services

of the HLA. The hmFederateAmbassador class is the

implementation of the RTI virtual class FederateAmbassador.

The hmFederateAmbassador class receives communications from

the RTI. The hmHLAObjectClass class will have one instance

for each type of object that will interact with the RTI and

will contain type wide attributes for that object type.

The hmHLAObject class represents individual objects that

interact with the RTI. The hmInteractionClass class

handles interactions such as collisions and weapons fires.

The hmHandleValuePair class is used to pair the RTI handle

 24

for an attribute or parameter with its value. HLA objects

use lists of hmHandleValuePairs to represent their

attributes.

hmHLAController

hmDisplayController

hmInteractionClasshmHLAObjectClass hmFederateAmbassador

hmHandleValuePairhmHLAObject

from RTI

Figure 9. Class Relationship Diagram.

1. hmHLAController Class

The hmHLAController class coordinates HLA services.

The class constructor creates a federation in the RTI if a

federation by the same name has not already been created.

 25

The constructor also joins the federate to the federation.

The destructor resigns a federation and destroys a

federation when no other federates are joined to a

federation. The hmHLAController functions coordinate the

transfer of data between the RTI federation and the

federate.

2. hmDisplayController Class

The hmDisplayController class is inherited from the

hmHLAController Class. The hmDisplayController class

coordinates the transfer of data for the HLA module. The

hmDisplayController class is the interface to a larger

application. The hmDisplayController class makes all

function calls to the rendering engine Application

Programmer’s Interface (API) for the HLA module, VEGA in

this case. Since hmDisplayController is the only class in

the HLA module that makes calls to the rendering engine, it

is the only class that must be adjusted when switching to a

different rendering engine.

Only one instance of an hmDisplayController should be

declared in each federate in a federation. As it is

written now, the hmDisplayController constructor

initializes Vega, which only needs to be done once. Since

hmDisplayController is inherited from hmHLAController, when

an instance of hmDisplayController is declared the

constructor for hmHLAController is also called. The

hmHLAController constructor goes through the steps required

to create and join a federation, which again only needs to

occur once per federate.

Since hmDisplayController inherits from

hmHLAController, no instance of an hmHLAController is

 26

declared in the application. The hmDisplayController has

access to all the HLA service functions of the

hmHLAController, so all HLA service calls in the

application call the hmDisplayController instance. The

hmDisplayController class has overloaded functions for the

functions in hmHLAController that require communication

with the rendering engine, such as receiving object

attribute updates from the RTI.

3. hmFederateAmbassador

The hmFederateAmbassador class is the HLA module

implementation of the pure virtual class FederateAmbassador

found in libRTI. The hmFederateAmbassador is the means by

which the RTI federation communicates with the federate.

This application only supports the object management

functions of the FederateAmbassador Class. The

hmFederateAmbassador keeps a pointer to the hmHLAController

for the federate the hmFederateAmbassador is associated

with. The hmHLAController pointer actually points to an

hmDisplayController instance because no instance of an

hmHLAController exists in this application. Since the

hmDisplayController class inherits from the hmHLAController

class, polymorphism allows an hmHLAController pointer to

point to an hmDisplayController instance.

4. hmHLAObjectClass

The hmHLAObjectClass class is responsible for managing

the different types of objects in the federate. The

hmHLAObjectClass handles the object type wide services such

as publication and subscription. The hmHLAObjectClass will

have one instance for each type of object in the federate.

The class maintains a static list of all of its instances.

 27

The hmHLAObjectClass class maintains lists of published

attributes, published object types and subscribed object

types. The hmHLAObjectClass class keeps a member variable

to hold the RTI ObjectClassHandle so that each instance

knows the handle the FedExec uses to identify it. The

hmHLAObjectClass class also maintains a pointer to the

federate’s RTIambassador.

5. hmHLAObject

The hmHLAObject class is responsible for managing the

individual HLA objects in the federate. This class handles

services such as sending and receiving attribute updates.

The hmHLAObject class maintains a static list of all

instances of the class.

Each hmHLAObject maintains several member variables in

order to carry out its functions. The p_Handle variable is

an RTI ObjectHandle, which is what the object is known as

in the FedExec. Each hmHLAObject also keeps a handle to

its object class, so that it knows what type of object it

is. Another important member variable is a pointer to a

visual object. The p_VisualObjPtr is a pointer to the

object in the rendering system that represents this HLA

object. This variable is important because when an update

is received from the FedExec, the HLA object knows which

rendering system object must be updated. This variable is

stored as a void pointer to keep it general so that other

rendering engines can be used without having to change the

hmHLAObject class. Each object also keeps a pointer to the

RTIambassador for the federate.

 28

6. hmHLAInteractionClass

The hmHLAInteractionClass class is responsible for

managing interaction services. This class processes the

publishing, subscribing, sending and receiving for the

different types of interactions supported by the federate.

The hmHLAInteractionClass class maintains a list of its

instances. The hmHLAInteractionClass maintains lists of

published and subscribed interaction classes. This class

also has a pointer to the federate’s RTIambassador. Each

instance keeps an RTI handle for its interaction class.

7. hmHandleValuePair

The hmHandleValuePair class matches the RTI handle for

an object or interaction to the value held by that object

or interaction. Lists of hmHandleValuePairs are used to

process the sending and receiving of object attribute

updates and interactions. Lists of hmHandleValuePairs are

used so that the hmHLAObject and hmInteractionClass classes

can process different types of objects and interactions.

This also means that different FOMs can be easily

supported. As long as the hmHandleValuePair class can

handle the data types of the FOM, the HLA module can

process the objects and interactions of any FOM. Current

data types supported by the hmHandleValuePair class include

string, integer, float, double, a C++ struct consisting of

three floats, and a C++ struct consisting of three doubles.

Another advantage is that only one class for objects and

interactions needs to be written. The hmHLAObject and

hmInteractionClass classes can process different types of

objects and interactions.

 29

B. HIGH LEVEL ARCHITECTURE SERVICES

The basic services of creating, destroying, joining,

and resigning a federation executive are handled in the

hmHLAController class by making appropriate calls to the

RTI using an RTIambassador.

The processes for handling object and interaction

services are detailed below.

1. Publishing Object Attributes

When a federate joins a federation execution, it must

inform the FedExec of the types of objects the federate

will be producing. It must also specify the attributes of

those objects for which the federate will be sending

updates.

To publish object attributes, first a call is made to

the hmDisplayController function PublishObject (function

inherited from hmHLAController) that takes string and

vector of strings as its parameters. The first parameter

is the name of the object class taken from the FOM. The

second parameter is a list of the names of the attributes

being published. The names of the attributes are also

taken from the FOM.

The PublishObject function first searches the instance

list of the hmHLAObjectClass for an instance with the same

class name. If an instance is not found, then a new

instance is created. Next, a call is made to the

hmHLAObjectClass’s Publish function.

The Publish function takes the input parameter handle

list and converts it to an AttributeHandleSet from libRTI.

The function then makes a call to the RTIambassador’s

 30

publishObjectClass function with the class handle and the

AttributeHandleSet as a parameter and publishes the

attributes in the FedExec. Next, the handle list and the

AttributeHandleSet are added to the list of published

attributes. Lastly, the object class is added to the list

of published object classes.

The process for subscribing to object types is very

similar to the publishing process and follows the same

logical flow.

call made to
hmDisplayController

PublishObject(obj_classname,
handle_list)

hmDisplayController (inherited
from hmHLAController)

Publish(handle_list)

hmHLAObjectClass

+look for obj_classname in
list of object classes

+if not found create a new
hmHLAObjectClass instance

+call Publish

+create an RTI::AttributeHandleSet

+call
RTIambassador::publishObjectClass

+add the attributes to the list of
published attributes

+add to the list of object types that have
been published

Figure 10. Publish Object Attributes.

2. Creating a Local Object

When a simulation creates an object to be displayed in

the simulation and wants that object to be shared with the

federation, an HLA object needs to be created and

registered with the FedExec.

 31

Before an hmHLAObject local to the federate can be

created, the attributes it will be sharing must be

published with the FedExec. To create a local hmHLAObject,

a call is made to the hmDisplayController function

CreateLocalObject (inherited from hmHLAController). The

CreateLocalObject function takes two input parameters: a

string and a void pointer. The first parameter is the

object class name taken from the FOM. The second parameter

is a pointer to the rendering system object cast to a void

pointer. The CreateLocalObject function declares a new

hmHLAObject and passes the class name string, a pointer to

the RTIambassador, and a pointer to the visual object to

the hmHLAObject constructor. When the CreateLocalObject

function completes, it returns a handle to the newly

created object.

The hmHLAObject constructor called from

CreateLocalObject initializes the object with the input

parameters. The constructor then registers the new object

with the FedExec by calling the RTIambassador’s

registerObjectInstance function. Registering the object

informs the FedExec of the object, so that the FedExec can

process the object’s updates.

 32

Figure 11. Create a Local Object.

3. Create a Remote Object

When the FedExec discovers a new instance of an object

class that the federate has subscribed to, the FedExec

calls the federate’s FederateAmbassador function

discoverObjectInstance. The discoverObjectInstance

function takes three parameters: a handle for the object,

a handle for the object’s class, and a character string

representing a FedExec designated name for the object.

First, the hmFederateAmbassador implementation of

discoverObjectInstance checks the object class handle

against the list of subscribed object classes to ensure

that the object is of a type that the federate is

interested in. If the object class is not in the

subscribed class list, then an error message is displayed

and the function terminates. If the object class is in the

list of subscribed object classes, then the

call to hmDisplayController

CreateLocalObject(obj_class,
(void*) visObj)

hmDisplayController (inherited
from hmHLAController)

hmHLAObject(obj_class,
rtiAmb, visObj)

hmHLAObject

note: at least one attribute of the
object must have been published
prior to calling this function.

+declare a new hmHLAObject

+return the handle for the object

+initialize the object

+register the object with the
RTI, RTIambassador::
registerObjectInstance

 33

CreateRemoteObject function of hmDisplayController

(inherited from hmHLAController) is called.

The CreateRemoteObject function declares a new

hmHLAObject and passes the object handle, object class

handle, and a pointer to the RTIambassador to the

constructor. The CreateRemoteObject then creates a new

rendering system object that matches the object class, so

the new object can be displayed in the simulation. The

function then calls the SetVisualObj function of the

hmHLAObject class with a void pointer to the new visual

object as a parameter. The SetVisualObj function sets the

visual object for the hmHLAObject instance.

RTI calls

discoverObjectInstance(
theObject, theObjectClass,

theObjectName)

hmFederateAmbassador

CreateRemoteObject(theObject,
theObjectClass)

hmDisplayController
(inherited from hmHLAController)

+check to make sure this is an
object of a subscribed class

+call CreateRemoteObject

+create a new hmHLAObject
(objHan, objCHan, rtiAmb)

+create a new display object

+set the visual object of the
hmHLAObject

Figure 12. Create a Remote Object.

4. Send a Local Object Attribute Update

When an application decides to send an update to an

object’s attributes to the FedExec, the application builds

a list of hmHandleValuePairs for the attributes to be

updated. The hmHandleValuePairs contain the FOM attribute

 34

name and the new value for that attribute. The application

then calls the SendObject function of the

hmDisplayController class (inherited from hmHLAController).

The SendObject function takes two parameters: the

hmHLAObject’s handle and the list of hmHandleValuePairs.

The SendObject function finds the hmHLAObject in the list

of hmHLAObject instances and then calls that hmHLAObject

instance’s Send function.

The hmHLAObject function Send has just one parameter:

the list of hmHandleValuePairs. First, the function

converts the list of hmHandleValuePairs to an RTI

AttributeHandleValuePairSet. The function then calls the

RTIambassador function updateAttributeValues to send the

updates to the FedExec. The updateAttributeValues function

takes three parameters: the object handle, the

AttributeHandleValuePairSet, and a character string tag.

call to hmDisplayController

SendObject(objHandle,
handleValueList)

hmDisplayController (inherited
from hmHLAController)

Send(handleValueList)

hmHLAObject

+find this object in the instance
list

+call Send

+create an
RTI::AttributeHandleValuePairSet
from the handleValueList

+call RTIambassador::
updateAttributeValues

Figure 13. Send a Local Object Update.

 35

5. Receive a Remote Object Attribute Update

When the FedExec receives an attribute update for

object type that a federate has subscribed to, the FedExec

makes a call to the federate’s FederateAmbassador to

reflect the attribute updates. The function called is

reflectAttributeValues, which takes three parameters in

this implementation. Those parameters are the handle to

the object being updated, the AttributeHandleValuePairSet

for the attributes being updated, and a character string

tag.

The hmFederateAmbassador implementation of

reflectAttributeValues first finds the object being updated

in the list of hmHLAObject instances. The function then

calls that instance’s Receive function.

The hmHLAObject Receive function has two parameters:

the AttributeHandleValuePairSet and a pointer to a

hmHLAController (an hmDisplayController instance in this

case). The hmHLAObject Receive function then converts the

AttributeHandleValuePairSet into a list of

hmHandleValuePairs. The Receive function then calls the

hmDisplayController function ReceiveObjUpdate_cb

(overloaded function from hmHLAController).

The ReceiveObjUpdate function takes two parameters: a

pointer to the hmHLAObject being updated and the list of

hmHandleValuePairs. The function determines the

hmHLAObjectClass of the hmHLAObject, so that the function

can properly update the rendering system object. The

function then applies the appropriate updates.

 36

RTI calls

reflectAttributeValues(
theObject, attributes, tag)

hmFederateAmbassador

Receive(attributes, hlaCntrl)

hmHLAObject

+find the object in the instance
list

+call Receive

+convert the
RTI::AttributeHandleValuePairSet
to a vector of
hmHandleValuePairs

+call ReceiveObjUpdate_cb

ReceiveObjUpdate_cb(objPtr,
handleValueList)

hmDisplayController
(overloaded function from

hmHLAController)

+determine the object class

+update the visual object

Figure 14. Receive a Remote Update.

6. Publish an Interaction

A federate must inform its FedExec what kinds of

interactions the federate is capable of producing before it

can start sending interactions to the FedExec. The

federate informs the FedExec by publishing the types of

interactions it can produce.

To publish a type of interaction, the application

calls the PublishInteraction function of the

hmDisplayController class (inherited from hmHLAController).

This function has just one parameter: a string that is the

interaction class name taken from the FOM. The

PublishInteraction function first checks to see if a

hmHLAInteractionClass instance exists with the class name

input as a parameter to the function. If no such instance

exists, the function declares a new hmHLAInteractionClass

instance. The function then calls the

hmHLAInteractionClass instance’s Publish function

The hmHLAInteractionClass Publish function calls the

RTIambassador function publishInteractionClass to publish

 37

the interaction class with the FedExec. The function then

adds the hmHLAInteractionClass instance to the list of

published interaction classes.

call to hmDisplayController

PublishInteraction(
interactionClassname)

hmDisplayController (inherited
from hmHLAController)

Publish()

hmHLAInteractionClass

+check to see if an instance of
the interaction exists

+if no, create a
hmInteractionClass instance

+call Publish

+call RTIambassador::
publishInteractionClass(
classHandle)

+add this interaction class to the
map of published interaction
classes

Figure 15. Publish an Interaction.

7. Send an Interaction

The framework exists in this implementation to send

interactions, but currently no interactions are implemented

in the test application.

When an interaction is generated by an application,

the SendInteraction function of the hmDisplayController

class is called (inherited from hmHLAController). The

parameters of this function are a string representing the

FOM name for the interaction class and a list of

HandleValuePairs containing the parameters for the

interaction. First, the function checks to see that this

interaction class has been published. If the interaction

 38

class has been published, then the function calls the

hmHLAInteractionClass function Send.

The hmHLAInteractionClass function Send takes the

hmHandleValuePair list as a parameter and then converts the

list to an RTI ParameterHandleValuePairSet. The Send

function then calls the RTIambassador function

sendInteraction. The sendInteraction function has the

following parameters: a handle to the interaction class,

the ParameterHandleValuePairSet, and a character string

tag.

The process for subscribing to interaction classes is

very similar to publishing interaction classes.

call to hmDisplayController

SendInteraction(iClassName,
handleValueList)

hmDisplayController (inherited
from hmHLAController)

Send(handleValueList)

hmHLAInteractionClass

+check to see that this is a
published interaction class

+call Send

+convert the handleValueList to an
RTI::ParameterHandleValuePairSet

+call
RTIambassador::sendInteraction(
classHandle, phvps, tag)

Figure 16. Send an Interaction.

8. Receive and Interaction

The framework exists in this implementation to receive

interactions, but currently no interactions are implemented

in the test application.

 39

When the FedExec receives an interaction of a type

that the federate has subscribed to, the FedExec makes a

call to the federate’s FederateAmbassador function

receiveInteraction. The receiveInteraction function has

the following parameters: the handle to the interaction

class, an RTI ParameterHandleValuePairSet of the

interaction’s parameters, and a character string tag.

This application’s hmFederateAmbassador implementation

of receiveInteraction first finds the hmHLAInteractionClass

instance from the hmHLAInteractionClass instance list that

corresponds to the received interaction. The function then

calls the hmHLAInteractionClass instance’s Receive

function.

The hmHLAInteractionClass Receive function has two

parameters: the ParameterHandleValuePairSet and a pointer

to an hmHLAController (an hmDisplayController instance in

this case). The Receive function takes the input

ParameterHandleValuePairSet and converts it to a list of

hmHandleValuePairs. The function then calls the

ReceiveInteraction_cb function of the hmDisplayController

class (overloaded function of hmHLAController).

The ReceiveInteraction_cb function takes the following

parameters: a pointer to the hmHLAInteractionClass

instance and the list of hmHandleValuePairs. The

ReceiveInteraction_cb function processes the interaction

depending on what type of interaction is received.

 40

RTI calls

receiveInteraction(
theInteraction, theParameters,

tag)

hmFederateAmbassador

Receive(theParameters,
hlaCntrlPtr)

hmHLAInteractionClass

+find the hmHLAInteractionClass
instance

+call Receive

+convert the
RTI::ParameterHandleValuePairSet
to a handleValueList

+call ReceiveInteraction_cb

ReceiveInteraction_cb(
interactionClass,
handleValueList)

hmDisplayController
(overloaded function from

hmHLAController)

Figure 17. Receive an Interaction.

C. OBJECT MODEL

The Federation Object Model chosen was the Real-time

Platform Reference Federation Object Model (RPR FOM)

Version 1. The RPR FOM was developed by the Simulation

Interoperability Standards Organization, Inc. (SISO).

Details of this object model can be found in the Guidance,

Rationale, and Interoperability Modalities for the Real-

time Platform Reference Federation Object Model (GRIM RPR

FOM).9 This FOM was chosen for its wide usage and its

compatibility with Joint Semi-Autonomous Forces (JSAF).

The FedExec reads the RPR FOM from the rpr-1.0.fed file.

The RPR FOM was designed to provide Distributed

Interactive Simulation (DIS) attribute and interaction

functionality for an HLA object environment. The RPR FOM

was designed to help transition DIS applications to HLA.

The RPR FOM was also designed to provide a general

framework to enhance interoperability.

9 Reilly, Sean and Briggs, Keith. (1999). Guidance, Rationale, and
Interoperability Modalities for the Real-time Platform Reference
Federation Object Model (RPR-FOM), Version 1.0, SISO, inc.

 41

Objects and interactions are maintained in a

structured hierarchy in the RPR FOM. The RPR FOM object

class structure is a four-tier hierarchy. Objects inherit

the attributes of the objects in higher tiers of which the

object is a child. For example, an aircraft will have

attributes unique to an aircraft as well as the attributes

of a platform, physical entity, and a base entity.

This thesis supports three object classes in the test

application. The supported classes are Aircraft,

AmphibiousVehicle, and GroundVehicle. All three classes

inherit from the Platform class, which in term inherits

from the PhysicalEntity class. The PhysicalEntity class

inherits from the BaseEntity class. For the test

application, two attributes were supported for these object

classes: WorldLocation and Orientation. WorldLocation and

Orientation are both attributes of BaseEntity, so the three

object classes inherited these attributes. The

WorldLocation attribute describes an object’s location in

the simulation by giving x, y, and z coordinates in meters.

WorldLocation is represented as a C++ struct of three

doubles. The Orientation attribute describes the object’s

orientation in space. The object’s orientation is

described by three angles: Psi or heading, Theta or pitch,

and Phi or roll. The units for the three angles are in

radians. The Orientation attribute is represented as a

struct of three floats.

Interactions in the RPR FOM are structured in a three-

tier hierarchy. Collision of the EntityInteraction family

and MunitionDetonation and WeaponFire of the Warfare family

 42

would be the most commonly used interactions. However, no

interactions are fully supported in the test application.

D. COMPATIBILITY WITH JOINT SEMI-AUTONOMOUS FORCES

This thesis was designed to be compatible with JSAF.

The main reason the RPR FOM was chosen as the FOM for this

thesis is because JSAF supports it. Additionally, the RTI

used in this thesis is the same as the one used by JSAF.

However, this thesis did not test compatibility with JSAF

in the test application.

E. CHANGING RENDERING PLATFORMS

The HLA module was designed so that only the

hmDisplayController class needs to be changed when changing

rendering platforms. In the test application, the

hmDisplayController class is the only class that makes

calls to the VEGA API and the hmDisplayController does not

makes calls directly to the RTI.

Several hmDisplayController functions would need to be

changed to support a new rendering platform. The

hmDisplayController constructor would need to be changed to

initialize the new rendering system and its variables. The

two call back functions for receiving attribute updates and

interactions would need to be changed to process the

updates for the new rendering platform. The

CreateDisplayObject function would need to be changed, so

that the new object created is an object from the new

rendering system. Lastly, the real time loop in the Run

function would need to be changed so that local object

updates are generated from the new rendering system.

 43

F. INTEGRATING THE HIGH LEVEL ARCHITECTURE MODULE INTO AN
EXISTING APPLICATION

The hmDisplayController class is the interface to

integrate an existing standalone application into an HLA

supported networked virtual environment. The Run function

of the hmDisplayController currently contains the runtime

loop for the test application. An existing application

could adjust the Run function to execute the application’s

runtime loop and make appropriate calls to the

application’s classes.

Another option available would be to use the

application existing runtime loop and make appropriate

calls to the hmDisplayController class to communicate with

the RTI. In the second option, the hmDisplayController

class will need to be able to make calls to the rendering

engine API in order to manipulate the rendering engine

objects.

For a large application with many supporting classes,

using the application’s existing run time loop would be

preferred. In this case, making adjustments to the

hmDisplayController class would be simpler than adapting

the hmDisplayController Run function and possibly making

changes to multiple supporting classes.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

V. TESTING AND RESULTS

A. PROTOTYPE SYSTEM

The initial prototype was a simple application to

establish a working High Level Architecture (HLA)

application. The initial prototype supported only one

object type and VEGA code was integrated throughout the

application. No interaction support was included in the

prototype. A simple Federation Object Model (FOM) was used

in the prototype

For the prototype, a federate application was run on

each of two machines with the Run Time Infrastructure (RTI)

executive running on a third machine. Each federate had

one entity that was shared over the network. Each federate

used the same terrain model. The RTI software was loaded

on all three machines, so that the RTI libraries would be

available locally on each federate machine. The initial

prototype successfully linked the two federates. Both

entities could be seen on each federate application.

Both computers used to test the initial prototype had

dual one GHz Intel Pentium III processors and a GeForce 3

graphics card. Each federate achieved a frame rate of

approximately 30 frames per second when running the HLA

application.

For a comparison with an application run in a

standalone mode, the LynX active preview tool was used to

preview the initialization file for the VEGA application.

The preview tool showed an average frame rate of around 75

frames per second.

 46

B. FINAL DESIGN

From the prototype, further work was done to add

support for additional object types and to isolate the

rendering engine specific code. Also, the framework for

supporting interactions was added. Work was also completed

to change FOMs to the Real-time Platform Reference

Federation Object Model (RPR FOM). This further work lead

to the development of the final implementation design for

this thesis.

The final design of the HLA module was tested using a

simple application. Again, two computers were used to run

one federate each. However, the RTI executive for this

test was in another building on campus on the same network.

One federate had an aircraft object while the other

federate had an amphibious vehicle object. A federation

was successfully created and joined by the federates. Each

federate published and registered their local objects and

subscribed to the object types each was interested in.

Each federate successfully discovered the others object and

correctly displayed the correct object type within the

simulation. Position and orientation information were

passed between the federates once per frame. Each federate

successfully updated their remote object’s position and

orientation. At the termination of the simulation, each

federate correctly resigned from the federation and the

federation was destroyed.

To test the federation simulation, one federate

application was run on a computer with dual 500 MHz Intel

Pentium III processors and an Intense3D Wildcat 4000

graphics card with 16 MB of video RAM. The other federate

 47

was run on a laptop computer with a one GHz Intel Pentium

III processor and an NVIDIA GeForce2 Go graphics card with

32MB video RAM. Frame rates averaged around 20 frames per

second on both machines.

For a comparison with an application run in a

standalone mode, the LynX active preview tool was used to

preview the initialization file for the VEGA application.

The preview tool showed an average frame rate of around 80

frames per second.

 48

THIS PAGE INTENTIONALLY LEFT BLANK

 49

VI. CONCLUSION

A. GENERAL DISCUSSION

The intent of this thesis was to create a High Level

Architecture (HLA) Module that would allow other

programmers to quickly develop an HLA compliant simulation.

To do this, the HLA module had to be as general as possible

to allow programmers the flexibility to develop

applications in whatever programming environment most

suited their needs. This requirement meant that the core

of the module had to be independent of the system used to

render the simulation. Additionally, support for multiple

object models was desirable, so attribute and interaction

handling had to be generalized within the HLA module.

The HmDisplayController class is interface to

rendering system and FOM. The hmDisplayController class

makes necessary calls to the rendering system that relate

to HLA services. The hmDisplayController class coordinates

data flow in the HLA module; however, it makes no direct

calls to the RTI. Handling of FOM data types are

generalized within the HLA module by using lists of

hmHandleValuePairs for processing.

B. CONTRIBUTIONS

The contribution made by this thesis is a framework on

which to build HLA compliant networked virtual

environments. This thesis provides support for the basic

services required for any HLA application and a structure

on which to add support for more HLA services, objects and

interactions. Federation HLA Services supported include

federation creation, join, resign, and destruction. Object

 50

services include publishing, subscribing, creating,

registering, discovering, and updating. Interaction

services include publishing, subscribing, sending, and

receiving.

C. FUTURE WORK

Several areas are available for further study in

relation to this thesis. These areas include adding

additional HLA services, support for more object types and

attributes and interactions, and increasing application

performance.

1. Additional High Level Architecture Services

For this thesis a minimum number of HLA services was

provided. More service areas exist that could be

supported. Time Management, Ownership Management, and Data

Distribution Management were not supported at all in this

implementation. Federation management services such as

federate synchronization and saving and restoring federates

could also be supported.

a. Time Management

Time Management is an important service provided

for in HLA. Time Management allows federates to remain

consistent with each ensuring all federates maintain the

same world picture. With Time Management, time is advanced

in a coordinated fashion. Object updates and interactions

will have a timestamp in their packets; so that the

receiving federates know exactly when an event has

occurred. A time regulating federate is responsible for

the progression of time in a constrained federate. By

default, HLA applications are not time regulating or time

constraining.

 51

b. Ownership Management

A federate owns an object when that federate is

able to send attribute updates for that object. Only one

federate can own an object at any one time. Ownership

Management provides methods for transferring ownership

between federates.

c. Data Distribution Management

In a large simulation with many entities a

federate may not care about updates for an entity a large

distance away. Processing updates for an entity outside of

a federate’s sensor range would be extraneous and

inefficient. Data Distribution Management allows for the

creation of regions. With Data Distribution Management, a

federate will only receive attribute updates and

interactions that occur within the federate’s region.

2. Additional Objects and Interactions

Only a minimal number of object types and no

interactions were supported for this implementation. Of

the object types supported only object position and

orientation were supported. The Real-time Platform

Reference Federation Object Model (RPR FOM) has defined

many more object types, attributes and interactions.

Additional object types that could be supported include sea

vehicles, space vehicles, and multi-environment vehicles.

Attributes such as both linear and angular velocity and

acceleration would need to be supported for a federation

using dead reckoning for example. Interactions such as

collisions, weapon fires, and munition detonations should

be supported at a minimum in most simulations.

 52

3. Improved Network Performance

Currently, the test application for this thesis sends

and receives object attribute updates at frame boundaries.

This causes an excess amount of network traffic and is not

scalable past more than just a few entities. A more

intelligent method for sending updates is needed. Updates

should only be sent when there is a change in attributes of

an object. A dead reckoning algorithm should be

implemented so that federates can continue to move objects

along a projected path until a new update is received. A

heart beat update packet could be sent every five seconds

for objects with no changes in that time span so that

federates new that the object still exists in the

simulation as is done in Distributed Interaction Simulation

applications.

 53

LIST OF REFERENCES

[1] Alluisi, E. A. (Jun. 1991). The Development of
Technology for Collective Training: SIMNET, a Case
History. Human Factors, Training Theory, Methods, and
Technology, Volume: 33, Issue: 3, 343-362.

[2] Ceranowicz, A. (no date). STOW, the Quest for a Joint

Synthetic Battlespace. In Proctor, Michael D (Ed.).
Web-based Technical Reference on Simulation
Interoperability (Ch. 8). (online). Available:
<http://www.engr.ucf.edu/people/proctor/Interoperabili
ty%20Text/Text%20Outline.htm> (29 Aug. 02).

[3] Cosby, L. N. (1995). SIMNET: an Insider’s

Perspective. In Clarke, T. L. (Ed.). SPIE Proceedings
Vol. CR58, Distributed Interactive Simulation Systems
for Simulation and Training in the Aerospace
Environment (pp. 59-72).

[4] Davis, P.K. (Aug. 1995). Distributed Interactive

Simulation in the Evolution of DOD Warfare Modeling
and Simulation. Proceedings of the IEEE , Volume: 83
Issue: 8, 1138 –1155.

[5] Department of Defense, Defense Modeling and Simulation

Office. (no date). High Level Architecture RTI 1.3-
Next Generation Programmer’s Guide, Version 5.

[6] Department of Defense. (1998). High Level Architecture

Interface Specification Version 1.3, Draft 11.

[7] Department of Defense. (1998). High Level Architecture

Object Model Template Specification Version 1.3.

[8] Department of Defense. (1998). High Level Architecture

Rules Version 1.3.

[9] Loper, M. L. (1995). Introduction to Distributed

Interactive Simulation. In Clarke, T. L. (Ed.). SPIE
Proceedings Vol. CR58, Distributed Interactive
Simulation Systems for Simulation and Training in the
Aerospace Environment (pp. 3-16).

 54

[10] Miller, D.C. & Thorpe J.A. (Aug 1995). SIMNET: the
Advent of Simulator Networking. Proceedings of the
IEEE, Volume: 83 Issue: 8, (pp. 1114 –1123)

[11] Ping, Ivan C. K. (2000). HLA Performance Measurement,

Computer Science Department, Naval Postgraduate
School, Mar 2000.

[12] Reilly, Sean and Briggs, Keith. (1999). Guidance,

Rationale, and Interoperability Modalities for the
Real-time Platform Reference Federation Object Model
(RPR-FOM), Version 1.0, SISO, inc.

[13] Sandeep Singhal & Michael Zyda. 1999. Networked

Virtual Environments - Design and Implementation,
Reading, Massachusetts: Addison-Wesley.

 55

APPENDIX A. C++ SOURCE CODE

The source code for this implementation will soon be

available at http://libgf.sourceforge.net.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code
C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn:
Operations Officer)
Camp Pendleton, California

